

Yu Tong Elie Guo¹, Élizabel Leblanc¹, Miriam H. Beauchamp^{1,2}, & Annie Bernier¹

¹Department of Psychology, University of Montreal, Canada; ²CHU Ste-Justine Research Center, Canada

Introduction

Theory of mind (ToM)

- Ability to attribute mental states to oneself and others¹
- Undergoes important development during childhood¹
- Plays a crucial role in social adjustment²

Theory of mind and brain morphology

Social brain

- In adults: identified by fMRI studies³
- In childhood: neural correlates of ToM remain unclear

Acquisition and practice of cognitive abilities

Experience-dependent mechanisms of neuroplasticity

Effect on brain morphology⁴

✤ Hypothesis

 Activation patterns more diffuse in children vs. adults?⁵

 \rightarrow Additional cortices whose GMV correlates to ToM are expected

Exact location of these regions not hypothesized a priori

✤ Objective

Investigate the associations between ToM performance in middle childhood and wholebrain GMV in late childhood.

Participants

58 children (25 boys) Three assessments: • T1 = 6 years (M = 6.07) • T2 = 7 years (M = 7.14) • T3 = 10 years (M = 10.47)

✤ Measures

<u>Theory of mind (T1, T2)</u> Second-order false-belief stories^{1,6} Scores at T1 and T2 significantly correlated (r = .28, p = .03) • Average score retained for

- - analyses

Grey matter volume (T3)

- whole-brain protocol
- \bullet 25)
- - Pediatric templates⁸

Statistical analyses

- p < .001, uncorrected \bullet
- Extend threshold = 100 voxels \bullet
- intracranial volume, maternal education and scanner model

Theory of mind and grey matter volume in late childhood

Method

MRI with standard 3D T1-weighted Scanner models: Siemens 3T Trio (n = 33) and Siemens 3T Prisma (n =

Preprocessing (CAT12, SPM12) • 8-mm FWHM smoothing

Multiple regressions analyses to predict whole-brain regional grey matter volume from ToM abilities Covariates: child age, sex, total

Results					Conclusion		
Higher performance on ToM tasks ↓↓↓ Larger GMV in the right medial prefrontal cortex (mPFC) and the temporo-parietal junction (TPJ) Smaller GMV in the right precuneus					Superior ToM during childhood was related to the volume of neural structures that are essential for mentalizing abilities at a later age		
					 TPJ, mPFC Consistent with studies of adult populations³ Involved in perspective taking, attributing mental states³ 		
Table 1. Associations Between Child Theory of Mind and Regional GMV in Late Childhood							
Cortical regions	BA	k	Т	MNI coordinates	 Precuneus Role in ToM considered secondary³ 		
Positive associations					 Involved in mental imagery³ 		
Right mPFC	11	306	5.13	6, 62, -22	 Negative associations : unexpected Developmental considerations: inverted U-shape of GMV maturation ⁸ 		
Right TPJ	39	142	4.18	42, -58, 14			
Negative associations					 Regional differences in the maturation process? 		
Right precuneus	7	216	4.05	9, -60, 64			
Note. Results hold at $p < .001$, uncorrected, with an extend threshold of 100 voxels. BA = Broadman's area. $k =$ number of voxels. $T =$ peak T-value.					 Additional observations Children vs. adults: no additional neural structure was found Repeated MRIs necessary to confirm whether positive or negative associations reflect greater maturity 		
						Precuneus	

Université m de Montréal

Human Brain Mapping, 30(8), 2315–2335. doi: 10.1002/nbm.20671 May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, *15*(10), 475–482. doi: 10.1016/j.tics.2011.08.002

5. Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development: Commentary. *Developmental Science*, 9(1), 1–20. doi: 10.1111/j.1467-7687.2005.00454.x

6. Sullivan, K., Zaitchik, D., & Tager-Flusberg, H. (1994). Preschoolers Can Attribute Second-Order Beliefs. Developmental Psychology, 30(3), 395–402. doi: 10.1037/0012-1649.30.3.395

Yoon, U., Fonov, V. S., Perusse, D., & Evans, A. C. (2009). The effect of template choice on morphometric analysis of pediatric brain data. *NeuroImage, 45*(3), 769–777. doi: 10.1016/j.neuroimage.2008.12.046

Giedd, J. N., Raznahan, A., Alexander-Bloch, A., Schmitt, E., Gogtay, N., & Rapoport, J. L. (2015). Child psychiatry 8. branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40(1), 43-49. doi: 10.1038/npp.2014.236